Obstruction of adaptation in diploids by recessive, strongly deleterious alleles.

نویسندگان

  • Zoe June Assaf
  • Dmitri A Petrov
  • Jamie R Blundell
چکیده

Recessive deleterious mutations are common, causing many genetic disorders in humans and producing inbreeding depression in the majority of sexually reproducing diploids. The abundance of recessive deleterious mutations in natural populations suggests they are likely to be present on a chromosome when a new adaptive mutation occurs, yet the dynamics of recessive deleterious hitchhikers and their impact on adaptation remains poorly understood. Here we model how a recessive deleterious mutation impacts the fate of a genetically linked dominant beneficial mutation. The frequency trajectory of the adaptive mutation in this case is dramatically altered and results in what we have termed a "staggered sweep." It is named for its three-phased trajectory: (i) Initially, the two linked mutations have a selective advantage while rare and will increase in frequency together, then (ii), at higher frequencies, the recessive hitchhiker is exposed to selection and can cause a balanced state via heterozygote advantage (the staggered phase), and (iii) finally, if recombination unlinks the two mutations, then the beneficial mutation can complete the sweep to fixation. Using both analytics and simulations, we show that strongly deleterious recessive mutations can substantially decrease the probability of fixation for nearby beneficial mutations, thus creating zones in the genome where adaptation is suppressed. These mutations can also significantly prolong the number of generations a beneficial mutation takes to sweep to fixation, and cause the genomic signature of selection to resemble that of soft or partial sweeps. We show that recessive deleterious variation could impact adaptation in humans and Drosophila.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selection is no more efficient in haploid than in diploid life stages of an angiosperm and a moss.

The masking hypothesis predicts that selection is more efficient in haploids than in diploids, because dominant alleles can mask the deleterious effects of recessive alleles in diploids. However, gene expression breadth and noise can potentially counteract the effect of masking on the rate at which genes evolve. Land plants are ideal to ask whether masking, expression breadth, or expression noi...

متن کامل

The advantages of segregation and the evolution of sex.

In diploids, sexual reproduction promotes both the segregation of alleles at the same locus and the recombination of alleles at different loci. This article is the first to investigate the possibility that sex might have evolved and been maintained to promote segregation, using a model that incorporates both a general selection regime and modifier alleles that alter an individual's allocation t...

متن کامل

Diploid gynogenesis in the Mexican axolotl.

Gynogenetic diploid axolotls were produced by activating eggs with ultraviolet-inactivated sperm, and then subjecting the activated eggs to heat shock. Optimal conditions for ultraviolet inactivation of the sperm, and for suppression of the second meiotic division by heat shock, were established. Gynogenetic diploids produced by these procedures included progeny homozygous for recessive alleles...

متن کامل

Selective Strolls: Fixation and Extinction in Diploids Are Slower for Weakly Selected Mutations Than for Neutral Ones.

In finite populations, an allele disappears or reaches fixation due to two main forces, selection and drift. Selection is generally thought to accelerate the process: a selected mutation will reach fixation faster than a neutral one, and a disadvantageous one will quickly disappear from the population. We show that even in simple diploid populations, this is often not true. Dominance and recess...

متن کامل

Hitchhiking of deleterious alleles and the cost of adaptation in partially selfing species.

Self-fertilization is generally seen to be disadvantageous in the long term. It increases genetic drift, which subsequently reduces polymorphism and the efficiency of selection, which also challenges adaptation. However, high selfing rates can increase the fixation probability of recessive beneficial mutations, but existing theory has generally not accounted for the effect of linked sites. Here...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 112 20  شماره 

صفحات  -

تاریخ انتشار 2015